High Pressure Die Casting Of Aluminium And Magnesium Alloys

J. G. (Gil) Kaufman is currently president of his consulting company, Kaufman Associates. Campbell's Complete Casting Handbook: Metal Casting Processes, Techniques and Design, Second Edition provides an update to the first single-volume guide to cover modern principles and processes in such breadth and depth, while also retaining a clear, practical focus. The work has a unique viewpoint, interpreting the behavior of castings, and metals as a whole, in terms of their biofilm content, the largely invisible casting defects which control much of the structure and behavior of metals. This new edition includes new findings, many from John Campbell's own research, on crack initiation, contact pouring, vortex gates, and the Cosworth Process. Delivers the expert advice that engineers need to make successful and profitable casting decisions ideal reference for those interested in solidification, vortex gates, nucleation, biofilm, remelting, and molding Follows a logical, two-part structure that covers both casting metallurgy and casting manufacture Contains established, must-have information, such as Campbell's '10 Rules' for successful casting manufacture Includes numerous updates and revisions based on recent breakthroughs in the industry

This practical guide to product and process engineering of various aluminum castings emphasizes process and material characteristics; product-process-alloy integration; manufacturing aspects of aluminum casting; product design features; tooling design, feeding and gating design; product quality needs and specifications; product launches; and successful conversions of aluminum from steel and iron.

Die Casting Metallurgy focuses on developments in the metallurgy of die casting. Ore distribution, smelting methods, and energy requirements for the major non-ferrous metals that are die cast are considered. This text has 29 chapters; the first of which provides an overview of early developments in die casting. After explaining how metals and alloys are die cast, the book turns to the production of aluminum and its alloys, aluminum alloy die castings, and melting equipment for aluminum alloys. The chapters that follow explore the metallurgy of zinc and magnesium alloys; brass and ferrous die casting; automatic metal transfer systems; metal melting treatments; and the metallurgy of die casting machines. Developments in lubrication, die casting, and finishing processes are also considered. This book also describes pressure die casting dies, thermal fatigue of die casting dies, heat treatment of die steels, and surface treatment of steels. Some comparative alloy specifications are summarized and an attempt is made to correlate units of hardness, strength, and other properties. This book will be of interest to materials scientists and industrial materials engineers.

In the current study, an industrial product (electrical wire connector) have been casted in cold chamber die casting process using LM2 aluminium alloy to produce certain specimens to be assessed under the study for the determination of the responses (mechanical properties such as impact strength, hardness and surface roughness). As cold chamber die casting is being popularly known for its efficient and accurate casting process which can process a broad range of castings with intricate shape easily, hence it requires a lot of study in controlling the process variables with optimum combination of process variables to produce defect free and sound casting. Therefore in the current study, the process variables such as pouring temperature (7250C, 7500C, 7750C), intensification pressure (170 kg/cm2, 180 kg/cm2, 190 kg/cm2), type of coating (oil+graphite coating, dycote+graphite coating and dycote coating) and type of cooling (air cooling, water cooling and oil cooling) have been varied at three levels and 9 different experiments have been designed using Taguchi array (L9 orthogonal array) to assess the effects of different combinations of process variables over the mechanical properties (impact strength, hardness and surface roughness). The study aims at selecting the optimum combination process variables on the basis of the responses resulted in the 9 experiments. The graphs for the responses (impact strength, hardness and surface roughness) against each process variables have been plotted and carefully observed to identify the significant process variable along with respective level of operation affecting the respective response. From the overall study, intensification pressure was concluded to be the most significant process variable with maximum contribution to the impact strength and surface finish. The micrograph images captured corresponding to the respective levels of intensification pressure (170 kg/cm2, 180 kg/cm2, 190 kg/cm2) revealed the presence of shrinkage porosity corresponding to lowest level of intensification pressure (170 kg/cm2) and with further increase in intensification pressure led to a decrease in the extent of presence of porosity. Dycote coating was considered as the most optimum coating with significant contribution to the hardness. Air cooling and oil cooling were equally significant process variables with equivalent contribution to the mechanical properties.

The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2017 covers a broad spectrum of current topics, including alloys and their properties; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; ecology; and structural applications. In addition, there is coverage of new and emerging applications. The 2005 Virtual International Conference on IPROMS took place on the Internet between 4 and 15 July 2005. IPROMS 2005 was an outstanding success. During the Conference, some 4168 registered delegates and guests from 71 countries participated in the Conference, making it a truly global phenomenon. This book contains the Proceedings of IPROMS 2005. The 107 peer-reviewed technical papers presented at the Conference have been grouped into twelve sections, the last three featuring contributions selected for IPROMS 2005 by Special Sessions chairmen: Collaborative and Responsive Manufacturing Systems - Concurrent Engineering - E-manufacturing, E-business and Virtual Enterprises - Intelligent Automation Systems - Intelligent Decision Support Systems - Intelligent Design Systems - Intelligent Planning and Scheduling Systems - Mechatronics - Reconfigurable Manufacturing Systems - Tangible Acoustic Interfaces (Tai Chi) - Innovative Production Machines and Systems - Intelligent and Competitive Manufacturing Engineering
A frequently misunderstood technology, die casting is considered the shortest route between raw material and near net shape. For many decades, high pressure die casting was viewed as an art based upon "seat of the pant" strategies. However, many of these crude reactions actually worked because the fundamental process is quite forgiving of eccentric aluminium is an important metal in manufacturing, due to its versatile properties and the many applications of both the processed metal and its alloys in different industries. Fundamentals of aluminium metallurgy provides a comprehensive overview of the production, properties and processing of aluminium, and its applications in manufacturing industries. Part one discusses different methods of producing and casting aluminium, covering areas such as casting of alloys, quality issues and specific production methods such as high-pressure diecasting. The metallurgical properties of aluminium and its alloys are reviewed in Part two, with chapters on quality topics such as hardening, precipitation processes and solute partitioning and clustering, as well as properties such as fracture resistance. Finally, Part three includes chapters on joining, laser sintering and other methods of processing aluminium, and its applications in particular areas of industry such as aerospace. With its distinguished editor and team of expert contributors, Fundamentals of aluminium metallurgy is a standard reference for researchers in metallurgy, as well as all those involved in the manufacture and use of aluminium products. Provides a comprehensive overview of the production, properties and processing of aluminium, and its applications in manufacturing industries. Considers many issues of central importance in aluminium production and utilization considering quality issues and design for fatigue growth resistance. The metallurgical properties of aluminium and its alloys are further explored with particular reference to work hardening and applications of industrial alloys. Research into the manufacture of lightweight automobiles is driven by the need to reduce fuel consumption to preserve dwindling hydrocarbon resources without compromising other attributes such as safety, performance, recyclability and cost. Materials, design and manufacturing for lightweight vehicles will make it easier for engineers to not only learn about the materials being considered for lightweight automobiles, but also to compare their characteristics and properties. Part one discusses materials for lightweight automotive structures with chapters on advanced steels for lightweight automotive structures, aluminium alloys, magnesium alloys for lightweight powertrains and automotive structures, thermoplastics and thermoplastic matrix composites and thermoset matrix composites for lightweight automotive structures. Part two reviews manufacturing and design of lightweight automotive structures covering topics such as manufacturing processes for light alloys, joining for lightweight vehicles, recycling and lifecycle issues and crashworthiness design for lightweight vehicles. With its distinguished editor and renowned team of contributors, Materials, design and manufacturing for lightweight vehicles is a standard reference for practicing engineers involved in the design and material selection for motor vehicle bodies and components as well as material scientists, environmental scientists, policy makers, car companies and automotive component manufacturers. Provides a comprehensive analysis of the materials being used for the manufacture of lightweight vehicles whilst comparing characteristics and properties. Examines crashworthiness design issues for lightweight vehicles and further emphasises the development of lightweight vehicles without compromising safety considerations and performance. Explores the manufacturing process for light alloys including metal forming processes for automotive applications. "It's about time that a practicing engineer with casting and academic experience has written a book that provides answers to questions about squeeze casting and semi-solid molding/forming that many engineers and students of casting need answered." —Joseph C. Benedyk, PhD, Consultant and retired technical director, Alcoa High Integrity Die Casting Processes provides a comprehensive look at the concepts of advanced die casting technologies, including vacuum die casting, squeeze casting, and several variants of semi-solid metalworking. Practical applications for these processes are illustrated in numerous case studies. This single-source reference tool presents the latest material in five sections: Basic concepts of die casting and molten metal flow High integrity die casting processes with case studies Product design considerations Controlling quality and avoiding defects Future advances under development Key coverage includes a survey of liquid metal flow, strategies to overcome the limitations of conventional die casting, and potential defects unique to high integrity die casting processes. Also featured are methods for minimizing porosity, reducing cost by design, practical applied statistical process control techniques, designing for manufacturability, and containment methods for potential processing defects. Several chapters present detailed real-world examples illustrating the broad range of applications possible using high integrity die casting processes. Included with this book is a CD-ROM containing PowerPoint(r) presentations for each chapter. These presentations can be used for training purposes in conjunction with numerous study questions designed to practically apply the content of the book to real-world situations. Selected PowerPoint(r) slides can be used to support engineering proposals, marketing presentations, or customer education seminars. High Integrity Die Casting Processes is a valuable reference for both component producers and component users alike. Process engineers, tool designers, manufacturing engineers, production managers, and machine operators will acquire a better understanding of these advanced die casting processes to optimize manufacturing and improve product quality. Component designers, product engineers, purchasing agents, buyers, supplier quality engineers, and project managers will gain insight into these processes and develop superior products by design. The 2015 collection will include papers from the following symposia: Alumina and Bauxite Aluminum Alloys: Fabrication, Characterization and Applications Aluminum Processing Aluminum Reduction Technology Cast Shop for Aluminum Production Electrode Technology for Aluminum Production Strip Casting of Light Metals. The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials. Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesium alloys for lightweight powertrains and automotive bodies, and polymer and composite moulding technologies. The final chapters then consider a range of design and manufacturing issues that need to be addressed when working with advanced materials, including the design of advanced automotive body structures and closures, technologies for reducing noise, vibration and harshness, joining systems, and the recycling of automotive materials. With its distinguished editor and international team of contributors, Advanced materials in automotive engineering is an invaluable guide for all those involved in the engineering, design or analysis of motor vehicle bodies and components, as well as all students of automotive design and engineering. Explores the development, potential and impact of using advanced materials for improved fuel economy, enhanced safety and effective mission control in the automotive industry. Provides a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications. Covers a range of design ideas and manufacturing issues that arise when working with advanced materials, including technologies for reducing noise, vibration and harshness, and the recycling of automotive materials. In this book the authors present the current state of both research and technological application of magnesium. In particular, casting and wrought alloys are presented in Chapter 5, followed by a large chapter.
dedicated to fabrication methods. Corrosion and Protection are treated in Chapter 7. Chapter 8 discusses Engineering Requirements, Strategies and Examples for automobiles in Europe, USA, Asia and Pacific and also for Aerospace and Consumer Articles. Chapter 10 is dedicated to recycling. The experience of authors from seven countries has been combined to produce this book. The book addresses materials researchers as well as design engineers. TOC:Introduction.- History.- Production Technologies.- Physical Metallurgy.- Melting, Alloysing and Refining.- Alloys of Practical Importance.- Fabrication Methods.- Corrosion and Surface Protection.- Engineering Requirements. Strategies and Examples.- Recycling.- Data Sheet.


This book reports the state of the art of energy-efficient electrical motor driven system technologies, which can be used now and in the near future to achieve significant and cost-effective energy savings. It includes the recent developments in advanced electrical motor end-use devices (pumps, fans and compressors) by some of the largest manufacturers. Policies and programs to promote the large scale penetration of energy-efficient technologies and the market transformation are featured in the book, describing the experiences carried out in different parts of the world. This extensive coverage includes contributions from relevant institutions in the Europe, North America, Latin America, Africa, Asia, Australia and New Zealand.

The need for light-weight materials, especially in the automobile industry, created renewed interest in innovative applications of magnesium materials. This demand has resulted in increased research and development activity in companies and research institutes in order to achieve an improved property profile and better choice of alloy systems. Here, development trends and application potential in different fields like the automotive industry and communication technology are discussed in an interdisciplinary approach.

A frequently misunderstood technology, die casting is considered the shortest route between raw material and near net shape. For many decades, high pressure die casting was viewed as an art based upon "seat of the pant" strategies. However, many of these crude reactions actually worked because the fundamental process is quite forgiving of eccentricities. Exploring these reactions with scientific logic, Die Casting Engineering presents a broad study of each procedure in the die casting process and clearly outlines its basic science and principles. This guide is written in a reader-friendly and logical format by an experienced authority in quality and productivity enhancement, tooling design, metal feed system analysis, temperature management, and environmental regulation. While its scope is broad and covers the many facets of die casting, the book's main focus is on function, problem identification and solution, and strategic logic. Generously illustrated, it provides a comprehensive explanation of why high pressure die casting is reliable, predictable, and teachable.

Abstract: In high pressure die casting (HPDC) of aluminum, cast material adhering to die is a significant defect. Adhesion occurs in two primary ways. The casting may stick preventing its removal from the die. Aluminum can also adhere to the die and buildup in local areas on the die surface with additional casting cycles. This second form of adhesion is called soldering. Lubricant is the best technology to control all forms of adhesion, but it comes at the cost of casting porosity, blisters, reduced die life, and increased die casting machine wear. New strategies to prevent adhesion are desired to eliminate the downsides of spray lubricants. Thermodynamically, there is a drive to form intermetallic phases between the aluminum casting and steel die. The kinetically controlled formation of these phases has been understood as the primary mechanism which causes sticking and soldering. Assuming this mechanism, adhesion should be eliminated by coating the die surface with a non-reactive material, but laboratory and industrial experiments show that this approach is partially effective. Also, kinetics based predictions cannot identify the areas where adhesion is most severe. Additional mechanisms are needed to further predict and reduce these defects. Friction is such a mechanism, and it has been overlooked as a significant cause of sticking and soldering in HPDC. Sticking results from the thermal contraction of the casting onto the die. This creates a friction force that resists ejection and may be larger than the ejection force capability of the die casting machine. Soldering is a special case where the local shear stress due to friction exceeds the local shear strength of the casting. This typically happens at high temperatures and can be predicted by the ratio of the local ejection shear stress and temperature dependent shear strength. Four aspects of HPDC adhesion were investigated to support this friction mechanism. First, the accepted theory of a kinetically controlled approach to the thermodynamic equilibrium does not adequately predict sticking and soldering. Next, the decrease in sticking force with increasing draft angle is predicted by a friction model. Third, soldering is shown to occur when the shear stress at ejection exceeds the strength of the casting via hot ejection test and computer models of industrial castings. Finally, the friction approach is applied to a range of casting conditions and alloys with discussion of optimization opportunities.

The Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes covers all aspects of the physical metallurgy, analytical techniques, and processing of aluminium, including hardening, annealing, aging, property prediction, corrosion, residual stress and distortion, welding, casting, forging, molten metal processing, machining, rolling, and extrusion. It also features an extensive, chapter-length consideration of quenching.

Comprehensive Materials Processing provides students and professionals with a one-stop resource consolidating and enhancing the literature of the materials processing and manufacturing universe. It provides authoritative analysis of all processes, technologies, and techniques for converting industrial materials from a raw state into finished parts or products. Assisting scientists and engineers in the selection, design, and use of materials, whether in the lab or in industry, it matches the adaptive complexity of emergent materials and processing technologies. Extensive traditional article-level academic discussion of core theories and applications is supplemented by applied case studies and advanced multimedia features. Coverage encompasses the general categories of solidification, powder, deposition, and deformation processing, and includes discussion on plant and tool design, analysis and characterization of processing techniques, high-temperatures studies, and the influence of process scale on component characteristics and behavior. Authored and reviewed by world-class academic and industrial specialists in each subject field Practical tools such as integrated case studies, user-defined process schemata, and multimedia modeling and functionality Maximizes research efficiency by collating the most important and established information in one place with integrated applets linking to relevant outside sources.